
© 2011 Carnegie Mellon

University

SEI Technologies Forum Twitter: #SEIVirtualForum

Agile Development and Software Architecture:

Understanding Scale and Risk

Ipek Ozkaya

Research, Technology and Systems Solutions (RTSS)

Program

Ozkaya is a senior member of the SEI technical staff within

the Architecture-Centric Engineering (ACE) Initiative in the

Research, Technology, and System Solutions (RTSS) Program.

Her current interests and projects are in developing empirical

methods for improving software development efficiency and

system evolution with a focus on software architecture

practices, software economics, and requirements management.

.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
24 OCT 2011 2. REPORT TYPE

3. DATES COVERED
 00-00-2011 to 00-00-2011

4. TITLE AND SUBTITLE
Agile Development and Software Architecture: Understanding Scale and
Risk

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University ,Software Engineering
Institute,Pittsburgh,PA,15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

38

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

© 2011 Carnegie Mellon

University

SEI Technologies Forum Twitter: #SEIVirtualForum

The challenge

DILBERT: @Scott Adams/Dist. By United Feature Syndicate, Inc

Tradeoffs and their dependencies must be supported by both

Agile software development and architecture practices

DILBERT: @Scott Adams/Dist. By United Feature Syndicate, Inc

© 2011 Carnegie Mellon

University

SEI Technologies Forum Twitter: #SEIVirtualForum

First, more capabilities

First, more infrastructure

Then, more infrastructure

underestimated

re-architecting costs

Then, more capabilities

neglected cost of

delay to market

need to monitor to

gain insight into life-

cycle efficiency

Brown, N., Nord, R., and Ozkaya, I. “Enabling Agility Through

Architecture.” Crosstalk 23, 6 (Nov./Dec. 2010): 1217.

The challenge

© 2011 Carnegie Mellon

University

SEI Technologies Forum Twitter: #SEIVirtualForum

0

2

4

6

8

10

12

1 2 3 4 5 6 7

Velocity

Focus on Priority

0

2

4

6

8

10

12

1 2 3 4 5 6 7

Velocity

Focus on Cost

Increased visibility into delivery

Focus on Integrated Value

0

2

4

6

8

10

12

1 2 3 4 5 6 7

Velocity

Use metrics to

monitor & select

development

tasks

© 2011 Carnegie Mellon

University

SEI Technologies Forum Twitter: #SEIVirtualForum

Agenda

Symptoms of failure

Concepts of scale and root-cause analysis

Tactics that can help

• Align feature and system decomposition.

• Create an architectural runway.

• Use matrix teams and architecture.

© 2011 Carnegie Mellon

University

SEI Technologies Forum Twitter: #SEIVirtualForum

Symptoms of failure

 Teams (e.g., Scrum teams, product development
teams, component teams, feature teams) spend
almost all of their time fixing defects, and new
capability development is continuously slipping.

 Integration of products built by different teams reveals that
incompatibility defects cause many failure conditions and
lead to significant out-of-cycle rework in addition to end-to-
end fault-tolerance failure.

 Progress toward meeting milestones is unsatisfactory.

© 2011 Carnegie Mellon

University

SEI Technologies Forum Twitter: #SEIVirtualForum

Scope drivers

Fundamental project
management concerns are
essential to keep in mind:

• If the schedule needs to be shorter,
you may see an increase in cost and
a decrease in scope.

• If cost becomes an issue, you may
see a decrease in scope or an
increase in schedule.

• If scope is increased, you may see an
increase in both cost and schedule.

Cost Schedule

Scope

Traditional approach :

Fixed scope driving cost

and schedule

Agile project management approach:

Fixed cost and schedule

driving scope

Cost Schedule

Scope

© 2011 Carnegie Mellon

University

SEI Technologies Forum Twitter: #SEIVirtualForum

A closer look at scale: Scope

 Is the project in a new domain or
technology?

 Does the project have new
requirements such as standards
compliance, system testing, and
integration lab environments, or
does it simply have more features,
elements, and relationships?

 Is there a need to align systems
engineering and software
development activities?

© 2011 Carnegie Mellon

University

SEI Technologies Forum Twitter: #SEIVirtualForum

A closer look at scale: Team

• Are there multiple teams that need
to interact, both internal and
external to the organization?

• What are the dependencies
between the work products of
system and software engineers?

• Have you considered the end-to-
end success of features that may
require resources from multiple
teams?

© 2011 Carnegie Mellon

University

SEI Technologies Forum Twitter: #SEIVirtualForum

A closer look at scale: Time

• Does the work require
different schedule constraints
for releases?

• How long is the work product
expected to be in service?

• How important are
sustainability and evolution?

© 2011 Carnegie Mellon

University

SEI Technologies Forum Twitter: #SEIVirtualForum

Polling question

Are you currently doing development in a large-scale context that
can be captured by extended scope, team size, or timelines of
scale?

1. Large team size

2. Larger than normal scope

3. Longer development roadmap

4. Product expected to be in service for a long time

5. At least two of the above

© 2011 Carnegie Mellon

University

SEI Technologies Forum Twitter: #SEIVirtualForum

Business

Culture Team Support

Quality

Attributes

Architecture
Productivity

Measures

Customer

Collaboration

Response to

Change

Investigate both technical and nontechnical areas, looking at both

Agile software development and software architecture fundamentals.

Root-cause analysis

© 2011 Carnegie Mellon

University

SEI Technologies Forum Twitter: #SEIVirtualForum

Root-cause analysis

Response to change

• Dynamic environment and changing
requirements are understood.

• Necessary technology and processes are
identified to respond to change.

• Impact of uncertainty on the project is
acknowledged.

• Waste is identified and tradeoffs managed
(e.g., technical debt and defects).

Quality

Attributes

Architecture
Productivity

Measures

Customer

Collaboration

Business

Culture Team Support

Response to

Change

© 2011 Carnegie Mellon

University

SEI Technologies Forum Twitter: #SEIVirtualForum

Root-cause analysis

Culture

• People are made available (internal and
external), including an appropriate number
of people who have the right skills and
knowledge and clear responsibilities.

• Team members are motivated and
empowered by many degrees of freedom.

• Clear communication among teams and
team members is established.

• There is high-level management support.

Quality

Attributes

Architecture
Productivity

Measures

Customer

Collaboration

Business

Team Support Culture

Response to

Change

© 2011 Carnegie Mellon

University

SEI Technologies Forum Twitter: #SEIVirtualForum

Root-cause analysis

Quality attributes

• The importance of quality attribute
requirements is understood.

• Quality attribute requirements are defined
and tied to business goals.

• Means for analysis of necessary quality
attributes are in place and used to predict
system properties.

• Measurement environment is in place to
monitor the implemented system quality
and “done” criteria.

Architecture
Productivity

Measures

Customer

Collaboration

Quality

Attributes

Business

Team Support Culture

Response to

Change

© 2011 Carnegie Mellon

University

SEI Technologies Forum Twitter: #SEIVirtualForum

Root-cause analysis

Architecture

• Evidence is provided that the architecture
satisfies quality attribute requirements.

• Appropriate functional requirements are
assigned to architecture elements.

• Architectural issues (e.g., technical debt)
are tracked and managed.

• Timeline of critical architectural decisions
is clear and scheduled.

Quality

Attributes

Productivity

Measures

Customer

Collaboration

Architecture

Business

Team Support Culture

Response to

Change

© 2011 Carnegie Mellon

University

SEI Technologies Forum Twitter: #SEIVirtualForum

Tactics to consider

Align feature and system decomposition.

Create an architectural runway.

Use matrix teams and architecture.

© 2011 Carnegie Mellon

University

SEI Technologies Forum Twitter: #SEIVirtualForum

Dependencies between

stories & supporting

architectural elements

Understanding the dependencies between

stories and architectural elements enables

staged implementation of technical

infrastructure in support of achieving

stakeholder value.

Dependencies among

architectural elements

Low-dependency architectures are a critical

enabler for scaling up Agile development.1

Dependencies among

stories

High-value stories may require the

implementation of lower value stories as

precursors.2

1. Poppendieck, M., and Poppendieck, T. Leading Lean Software Development. Addison-Wesley
Professional, 2009.

2. Denne, M., and Cleland-Huang, J. Software by Numbers. Prentice Hall, 2003.

Align feature and system decomposition

© 2011 Carnegie Mellon

University

SEI Technologies Forum Twitter: #SEIVirtualForum

Tension between high-priority features (vertical decomposition)
versus common reusable services (horizontal decomposition)

Applications

Services

Drivers

Horizontal decomposition

(e.g., layers)

Infrastructure-driven

approach

F
e
a
tu

re
 1

F
e
a
tu

re
 2

F
e
a
tu

re
 3

Vertical decomposition

(e.g., subsystems, features)

Feature-driven

approach

Services

Drivers

Hybrid approach

F
e
a
tu

re
 1

F
e
a
tu

re
 2

F
e
a
tu

re
 3

Align feature and system decomposition

© 2011 Carnegie Mellon

University

SEI Technologies Forum Twitter: #SEIVirtualForum

Align feature and system decomposition
Two examples

Decouple teams and architecture to ensure parallel
progress as the number of teams increases.

Presentation Layer

Domain Layer

Data Access Layer

Framework

Framework

Framework

Feature

Feature

Feature

Common Services

Common Services

Common Services

API

API

Presentation Layer

Domain Layer

Data Access Layer

API

API

Common Services

Feature

Common Services

Feature

Common Services

Feature

Layered architecture with frameworks Layered architecture with plug-ins

Plug-in Interfaces

Plug-in Interfaces

Plug-in Interfaces

© 2011 Carnegie Mellon

University

SEI Technologies Forum Twitter: #SEIVirtualForum

Create an architectural runway

The architectural runway provides the degree of
architectural stability to support the next n iterations
of development.

In a Scrum project environment, the architectural
runway may be established during Sprint 0.

•Sprint 0 might have a longer duration than the rest of
the sprints.

© 2011 Carnegie Mellon

University

SEI Technologies Forum Twitter: #SEIVirtualForum

Create an architectural runway

Leffingwell, D. Scaling Software Agility. Addison-Wesley, 2007.

http://scalingsoftwareagility.wordpress.com/2008/09/09/enterprise-agility-the-big-picture-10-the-system-team

The bigger the system, the longer the runway.

Leffingwell, Martens, Zamora

© 2011 Carnegie Mellon

University

SEI Technologies Forum Twitter: #SEIVirtualForum

Use matrix teams and architecture

Establishing the infrastructure

 Presentation Layer

Common Service

Common Service

Common Service

API

APIData Access Layer

Domain Layer

Scrum

Team A

Scrum

Team B

Scrum

Team C

© 2011 Carnegie Mellon

University

SEI Technologies Forum Twitter: #SEIVirtualForum

Use matrix teams and architecture

Feature development in parallel

Presentation Layer

APIDomain Layer

APIData Access Layer

Common

Services

Common

Services

Common

Services

F
e

a
tu

re
 1

F
e

a
tu

re
 1

F
e

a
tu

re
 1

Scrum

Team A

Scrum

Team B

Scrum

Team C

Team member with feature responsibility

Scrum of

Scrums

© 2011 Carnegie Mellon

University

SEI Technologies Forum Twitter: #SEIVirtualForum

Use matrix teams and architecture

Different teams are
assigned to different
features, and some
team members are
assigned to keep
layers and framework
consistent.

Presentation Layer

Domain Layer

Data Access Layer

Framework

Framework

Framework

Feature

Feature

Feature

Common Services

Common Services

Common Services

API

API

Scrum

Team A

Scrum

Team B

Scrum of

Scrums

Team member with layer responsibility

© 2011 Carnegie Mellon

University

SEI Technologies Forum Twitter: #SEIVirtualForum

Different teams are
assigned to different
features, and a temporary
team is assigned to
prepare layers and
frameworks for future
feature teams.

Presentation Layer

Domain Layer

Data Access Layer

Framework

Framework

Framework

Feature

Feature

Feature

Common Services

Common Services

Common Services

API

API

Scrum

Team A

Scrum

Team B

Temporary

sprint team

Use matrix teams and architecture

© 2011 Carnegie Mellon

University

SEI Technologies Forum Twitter: #SEIVirtualForum

Root-cause analysis: Typical problem 1

Symptom

• Scrum teams spend almost all of their time fixing defects, and new
feature development is continuously slipping.

Root-cause
Inability to manage scope and time at scale

• Initial focus was “general” rather than “product specific.”

– Time pressure to deliver became the top priority.

– The team delivered an immature product.

– A plethora of variation parameters interact detrimentally.

• There are three different cycles:

– Customer release (annually, many variants); IV&V Testing
(quarterly, 4 variants), and Developmental (monthly, 1 variant)

© 2011 Carnegie Mellon

University

SEI Technologies Forum Twitter: #SEIVirtualForum

Solution

Stabilize the architecture.

• Build an architecture for current products.

–Rules, guidelines

–Over a few time boxes

• Reduce the number of “variant parameterizations.”

• Make everyone play from the same sheet music.

• Postpone adding new features.

Replan the release cycles/time boxes.

Revisit the testing strategy/team assignments against
variants.

© 2011 Carnegie Mellon

University

SEI Technologies Forum Twitter: #SEIVirtualForum

Root-cause analysis: Typical problem 2

Symptom

• Integration of products built by different Scrum teams reveals that
incompatibility defects cause many failure conditions and lead to
significant out-of-cycle rework.

Root -cause
Inability to manage teams at scale

• Cross-team coordination is poor, even though there are many
coordination points and much time spent.

• Different teams have different interpretations of interfaces.

• The product owner on each Scrum team does not see the big picture.

• A mismatch exists between the architecture and Scrum development.

© 2011 Carnegie Mellon

University

SEI Technologies Forum Twitter: #SEIVirtualForum

Solution

Stabilize to remove failures.

• Postpone adding new features.

Identify and collapse common services across teams.

Use an architectural runway.

• A system that has an architectural runway contains
existing or planned infrastructure sufficient to allow
incorporation of current and near-term anticipated
requirements without excessive refactoring.

• An architectural runway is represented by infrastructure
initiatives that have the same level of importance as the
larger scale requirements epics that drive the company’s
vision forward.

© 2011 Carnegie Mellon

University

SEI Technologies Forum Twitter: #SEIVirtualForum

Root-cause analysis: Typical problem 3

Symptom

• Progress toward meeting milestones is unsatisfactory.

Root-cause
Inability to manage teams and scope at scale

• Mapping of features to software components per Scrum
cycle is disorganized.

• Some new features are unused in each cycle, causing
wasted effort.

• Developer assignment to teams is inflexible.

© 2011 Carnegie Mellon

University

SEI Technologies Forum Twitter: #SEIVirtualForum

Solution

Build more architectural views to align features between
teams.

Reorganize teams to better fit iteration and release
workloads.

Create matrix teams to clean up unused features.

© 2011 Carnegie Mellon

University

SEI Technologies Forum Twitter: #SEIVirtualForum

Final thoughts

No one tactic alone can take any project to success.

Systematic root-cause analysis is essential for understanding
risks arising in large-scale software development.

There are different aspects of scale that may need to be
managed with different approaches, such as scope, team,
and time.

Embracing the principles of both Agile software development
and software architecture provide improved visibility of project
status and better tactics for risk management.

• Align feature and system decomposition.

• Create an architectural runway.

• Use matrix teams and architecture.

© 2011 Carnegie Mellon

University

SEI Technologies Forum Twitter: #SEIVirtualForum

References

Ambler, S. The Agile Scaling Model (ASM): Adapting Agile Methods for Complex
Environments. IBM developerWorks, 2009.
https://www.ibm.com/developerworks/mydeveloperworks/blogs/ambler/entry/agil
e_scaling_model?lang=en

Brown, N., Nord, R., and Ozkaya, I. “Enabling Agility Through Architecture.”
Crosstalk 23, 6 (Nov./Dec. 2010): 1217.

Denne, M., and Cleland-Huang, J. Software by Numbers, Prentice Hall, 2003.

Kruchten, P. “What Color Is Your Backlog?” Agile Vancouver talk, 2009.
http://files.me.com/philippe.kruchten/vuldw4

Larman, C., and Voddle, B. Scaling Lean & Agile Development. Addison-
Wesley, 2009.

Leffingwell, D. Scaling Software Agility. Addison-Wesley, 2007.
http://scalingsoftwareagility.wordpress.com/2008/09/09/enterprise-agility-the-big-
picture-10-the-system-team

Poppendieck, M., and Poppendieck, T. Leading Lean Software Development.
Addison-Wesley Professional, 2009.

https://www.ibm.com/developerworks/mydeveloperworks/blogs/ambler/entry/agile_scaling_model?lang=en
https://www.ibm.com/developerworks/mydeveloperworks/blogs/ambler/entry/agile_scaling_model?lang=en
http://files.me.com/philippe.kruchten/vuldw4
http://scalingsoftwareagility.wordpress.com/2008/09/09/enterprise-agility-the-big-picture-10-the-system-team
http://scalingsoftwareagility.wordpress.com/2008/09/09/enterprise-agility-the-big-picture-10-the-system-team
http://scalingsoftwareagility.wordpress.com/2008/09/09/enterprise-agility-the-big-picture-10-the-system-team
http://scalingsoftwareagility.wordpress.com/2008/09/09/enterprise-agility-the-big-picture-10-the-system-team
http://scalingsoftwareagility.wordpress.com/2008/09/09/enterprise-agility-the-big-picture-10-the-system-team
http://scalingsoftwareagility.wordpress.com/2008/09/09/enterprise-agility-the-big-picture-10-the-system-team
http://scalingsoftwareagility.wordpress.com/2008/09/09/enterprise-agility-the-big-picture-10-the-system-team
http://scalingsoftwareagility.wordpress.com/2008/09/09/enterprise-agility-the-big-picture-10-the-system-team
http://scalingsoftwareagility.wordpress.com/2008/09/09/enterprise-agility-the-big-picture-10-the-system-team
http://scalingsoftwareagility.wordpress.com/2008/09/09/enterprise-agility-the-big-picture-10-the-system-team
http://scalingsoftwareagility.wordpress.com/2008/09/09/enterprise-agility-the-big-picture-10-the-system-team
http://scalingsoftwareagility.wordpress.com/2008/09/09/enterprise-agility-the-big-picture-10-the-system-team
http://scalingsoftwareagility.wordpress.com/2008/09/09/enterprise-agility-the-big-picture-10-the-system-team
http://scalingsoftwareagility.wordpress.com/2008/09/09/enterprise-agility-the-big-picture-10-the-system-team
http://scalingsoftwareagility.wordpress.com/2008/09/09/enterprise-agility-the-big-picture-10-the-system-team
http://scalingsoftwareagility.wordpress.com/2008/09/09/enterprise-agility-the-big-picture-10-the-system-team
http://scalingsoftwareagility.wordpress.com/2008/09/09/enterprise-agility-the-big-picture-10-the-system-team

© 2011 Carnegie Mellon

University

SEI Technologies Forum Twitter: #SEIVirtualForum

Upcoming

Forthcoming SEI Technical Report on

Managing Agility at Scale:

A Software Architecture Perspective

Bachmann, F., Nord, R., Ozkaya, I., Wojcik, R., Wood, W., and
Brown, N.

IEEE Software Special Issue on Technical Debt

Guest Editors: Philippe Kruchten, Robert Nord, and Ipek Ozkaya

http://www.computer.org/portal/web/computingnow/swcfp6

http://www.computer.org/portal/web/computingnow/swcfp6

© 2011 Carnegie Mellon

University

SEI Technologies Forum Twitter: #SEIVirtualForum

Contact Information

Ipek Ozkaya

Research, Technology, and System Solutions Program

Architecture Practices Initiative

Email: ozkaya@sei.cmu.edu

Software Engineering Institute

Customer Relations

4500 Fifth Avenue

Pittsburgh, PA 15213-2612

USA

© 2011 Carnegie Mellon

University

SEI Technologies Forum Twitter: #SEIVirtualForum

Copyright 2011 Carnegie Mellon University.

This material is based upon work supported by the Department of Defense under Contract No. FA8721-05-C-
0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded
research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the United States Department of Defense.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY
WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted below.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material for
internal use is granted, provided the copyright and “No Warranty” statements are included with all
reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distributed in
written or electronic form without requesting formal permission. Permission is required for any other external
and/or commercial use. Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

*These restrictions do not apply to U.S. government entities.

mailto:permission@sei.cmu.edu

© 2011 Carnegie Mellon

University

SEI Technologies Forum Twitter: #SEIVirtualForum

As projects continue to grow in scale and complexity, effective collaboration across geographical, cultural, and technical boundaries is

increasingly prevalent and essential to system success. SATURN 2012 will explore the theme of “Architecture: Catalyst for Collaboration.”

